## On Generalized Degree Fairness in Graph Neural Networks

Zemin Liu, 1\* Trung-Kien Nguyen, 2 Yuan Fang 2 National University of Singapore, Singapore Singapore Management University, Singapore zeminliu@nus.edu.sg, {tknguyen, yfang}@smu.edu.sg

Code: https://github.com/ntkien1904/DegFairGNN

2023. 5. 18 • ChongQing

- AAAI 2023









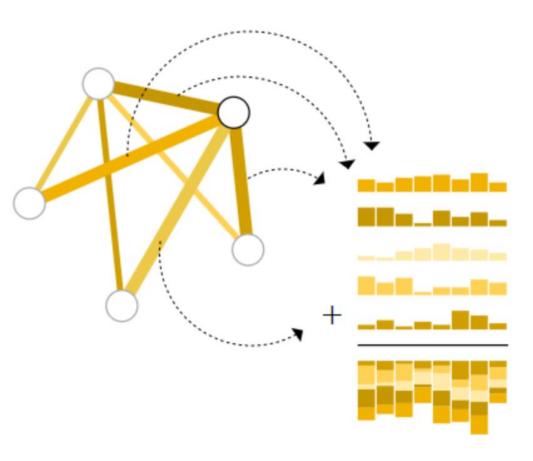




## 1.Introduction

- 2.Overview
- 3.Methods
- 4.Experiments












## Introduction

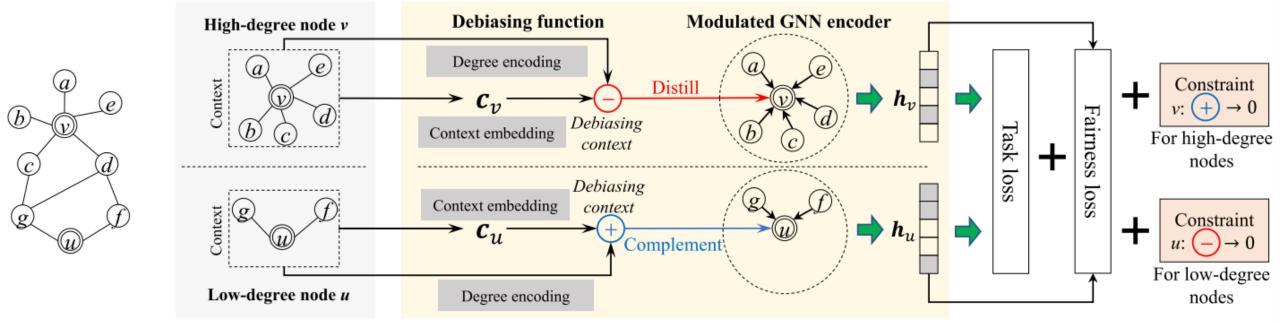


Conventional graph neural networks (GNNs) confronted with fairness issues that may stem from their input, including node attributes and neighbors surrounding a node.

Existing studies have shown that the structure of graph neural networks can further strengthen the biases hidden in data, thus leading to discriminatory decisions regarding age, gender, race, etc

GNN, aggregate information from adjacent nodes

## Introduction


#### QUESTION:

- 1. drastic differences in node degrees could lead to differential node behaviors and biased outcomes.
- 2. a node of larger degree is more likely to possess crucial advantages and thus receives more favorable outcomes than warranted.

#### WORK:

- 1. Defining and addressing generalized degree fairness in GNNs.
- 2. DegFairGNN that can flexibly work with neighborhood aggregation-based GNNs, to eliminate the generalized degree bias rooted in the layer-wise neighborhood aggregation.

## **Overview**



- (a) Toy graph
- (b) Structural contrast

(c) Debiasing neighborhood aggregation

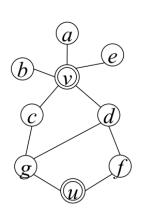
(d) Overall objective

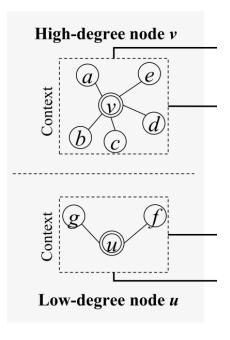
## Method

### Generalized degree

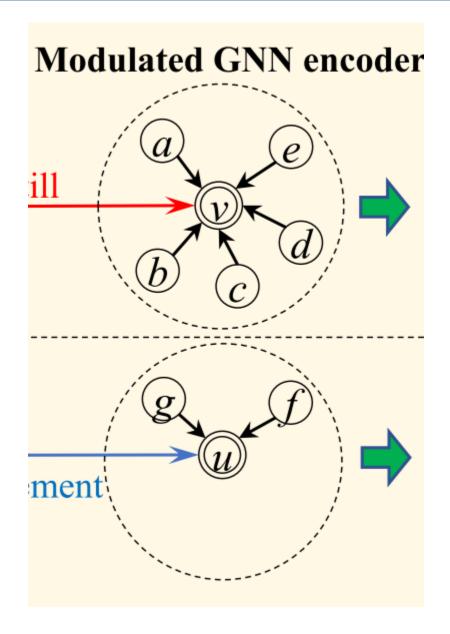
$$\deg_r(v) = [\mathbf{A}^r \mathbf{1}]_v, \tag{1}$$

#### Generalized degree fairness


$$\mathcal{G}_i = \{ v \in \mathcal{V} \mid d_i \le \deg_r(v) < d_{i+1} \}, \tag{2}$$


### **Degree Statistical Parity (DSP)**

$$P(\hat{y}_v = y | v \in \mathcal{G}_i) = P(\hat{y}_v = y | v \in \mathcal{G}_i), \tag{3}$$

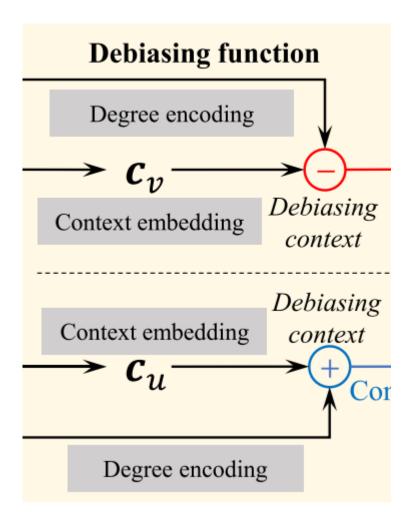

### Degree Equal Opportunity (DEO)

$$P(\hat{y}_v = y | y_v = y, v \in \mathcal{G}_i) = P(\hat{y}_v = y | y_v = y, v \in \mathcal{G}_j).$$





- (a) Toy graph
- (b) Structural contrast




## Method

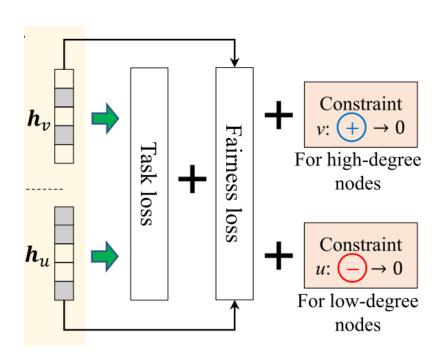
$$\mathbf{h}_{v}^{l} = \sigma\left(\operatorname{AGGR}\left(\{\mathbf{h}_{u}^{l-1} \mid u \in \mathcal{N}_{v}\}; \omega^{l}\right)\right), \tag{4}$$

$$\mathbf{h}_{v}^{l} = \sigma \left( \operatorname{AGGR}(\{\mathbf{h}_{u}^{l-1} \mid u \in \mathcal{N}_{v}\}; \omega^{l}) + \epsilon \cdot \left( \underbrace{I(v \in \mathcal{S}_{0})\mathcal{D}(v; \theta_{0}^{l})}_{\text{complement low-deg. group}} + \underbrace{I(v \in \mathcal{S}_{1})\mathcal{D}(v; \theta_{1}^{l})}_{\text{distill high-deg. group}} \right) \right), \quad (9)$$

# Method



## Comprehensiveness


$$\mathbf{c}_v^l = \text{POOL}(\{\mathbf{h}_u^{l-1} \mid u \in \mathcal{C}_r(v)\}), \tag{5}$$

$$\mathcal{D}(v; \theta_*^l) = f(\mathbf{c}_v^l; \theta_{c,*}^l), \tag{6}$$

### Adaptiveness

$$\mathcal{D}(v; \theta_*^l) = (\gamma_v^l + \mathbf{1}) \odot f(\mathbf{c}_v^l; \theta_{c,*}^l) + \beta_v^l, \tag{7}$$

$$\gamma_v^l = \phi_\gamma(\delta^l(v); \theta_\gamma^l), \quad \beta_v^l = \phi_\beta(\delta^l(v); \theta_\beta^l), \tag{8}$$



(d) Overall objective

#### **Classification loss**

$$\mathcal{L}_1 = -\sum_{v \in \mathcal{V}^{\mathrm{tr}}} \sum_{y=1}^{|\mathcal{Y}|} [\mathbf{y}_v]_y \ln[\mathbf{h}_v^{\ell}]_y,$$

# Method

#### **Fairness loss**

$$\mathcal{L}_2 = \left\| \frac{1}{|\mathcal{S}_0^{\text{tr}}|} \sum_{v \in \mathcal{S}_0^{\text{tr}}} \mathbf{h}_v^{\ell} - \frac{1}{|\mathcal{S}_1^{\text{tr}}|} \sum_{v \in \mathcal{S}_1^{\text{tr}}} \mathbf{h}_v^{\ell} \right\|_2^2, \tag{11}$$

### Constraints on debiasing contexts

$$\mathcal{L}_{3} = \sum_{l=1}^{\ell} \left( \sum_{v \in \mathcal{S}_{0}^{\text{tr}}} \| \mathcal{D}(v; \theta_{1}^{l}) \|_{2}^{2} + \sum_{v \in \mathcal{S}_{1}^{\text{tr}}} \| \mathcal{D}(v; \theta_{0}^{l}) \|_{2}^{2} \right). \tag{12}$$

### Constraints on scaling and shifting

$$\mathcal{L}_4 = \sum_{l=1}^{\ell} \sum_{v \in \mathcal{V}^{\text{tr}}} (\|\gamma_v^l\|_2^2 + \|\beta_v^l\|_2^2). \tag{13}$$

#### **Overall loss**

(10) 
$$\mathcal{L} = \mathcal{L}_1 + \mu \mathcal{L}_2 + \lambda (\mathcal{L}_3 + \mathcal{L}_4), \tag{14}$$

# **Experiments**

Table 2: Comparison with baselines (r = 1, 20% Top/Bottom).

Henceforth, tabular results are in percent with standard deviation over 5 runs; the best fairness result is **bolded** and the runner-up is <u>underlined</u>.

|                                                                                                                               | ∥ GCN                                                                                           | DSGCN                                                                              | Residual2Vec                                                               | Tail-GNN   FairWalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k CFC                                                                                                                        | FairGNN                                                  | FairAdj                                                  | FairVGNN                                                                          | DegFairGCN                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                                                               |                                                                                                 |                                                                                    |                                                                            | $66.08 \pm 0.19$ $  56.36 \pm 0.7$<br>$8.51 \pm 1.72$ $  8.18 \pm 0.9$<br>$26.09 \pm 3.25$ $  22.89 \pm 2.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                                          |                                                          |                                                                                   |                                                                                              |
| Squirrel $\begin{vmatrix} Acc. \uparrow \\ \Delta_{DSP} \downarrow \\ \Delta_{DEO} \downarrow \end{vmatrix}$                  | $\begin{array}{c c}   & 47.85 \pm 1.33 \\   & 13.37 \pm 2.83 \\   & 27.00 \pm 3.79 \end{array}$ | $\begin{vmatrix} 40.71 \pm 2.17 \\ 16.08 \pm 0.86 \\ 22.61 \pm 3.74 \end{vmatrix}$ | $28.47 \pm 0.01$<br>$25.11 \pm 0.48$<br>$34.49 \pm 0.72$                   | $42.62 \pm 0.06$ $37.68 \pm 0.06$ $18.91 \pm 0.26$ $7.94 \pm 0.06$ $33.60 \pm 0.72$ $17.12 \pm 1.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $.65 	ext{ } 45.64 \pm 2.19$<br>$.36 	ext{ } 12.40 \pm 0.48$<br>$.50 	ext{ } 21.60 \pm 2.69$                                 | $57.29 \pm 0.77$<br>$12.96 \pm 1.03$<br>$17.62 \pm 2.40$ | $35.18 \pm 1.22$<br>$36.63 \pm 1.56$<br>$27.54 \pm 1.73$ | $\begin{array}{c} 46.97 \pm 0.48 \\ 26.67 \pm 0.52 \\ 35.80 \pm 1.76 \end{array}$ | $ \begin{vmatrix} 59.21 \pm 0.97 \\ 9.54 \pm 1.02 \\ \textbf{16.42} \pm 1.38 \end{vmatrix} $ |
| $\begin{array}{c c} \text{EMNLP} & \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \end{array}$ | $\begin{array}{c c}   78.92 \pm 0.43 \\ 44.55 \pm 1.90 \\ \hline 34.05 \pm 3.56 \end{array}$    |                                                                                    | $ 80.69 \pm 0.01  \underline{12.90} \pm 0.15  \underline{11.26} \pm 0.67 $ | $83.72 \pm 0.28 \mid 82.23 \pm 0.41.18 \pm 1.58 \mid 33.52 \pm 1.441.18 \mid 30.67 \pm 1.44114 \mid 30.67 \mid$ | $     \begin{array}{r}       18 & 80.15 \pm 1.13 \\       46 & 56.60 \pm 1.95 \\       42 & 45.21 \pm 2.27     \end{array} $ | $86.81 \pm 0.22$<br>$58.23 \pm 1.44$<br>$51.56 \pm 1.38$ | $76.50 \pm 1.55$<br>$40.38 \pm 4.64$<br>$41.89 \pm 4.78$ | $84.03 \pm 0.34$<br>$43.92 \pm 1.43$<br>$40.95 \pm 1.71$                          |                                                                                              |

# **Experiments**

Table 3: Comparison to baselines (r=2,20% Top/Bottom).

|                                                                                 | ∥ GCN                                                                                                                 | FairWalk                                                                                        | FairGNN                                                              | DegFairGCN                                                                                                         |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Chamel. $\begin{vmatrix} Acc. 1 \\ \Delta_{DSP} \\ \Delta_{DEO} \end{vmatrix}$  | $ \begin{array}{c c}                                    $                                                             | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                          | $70.70 \pm 0.52$<br>$6.70 \pm 0.32$<br>$23.66 \pm 0.93$              |                                                                                                                    |
| Squirrel $\begin{vmatrix} Acc. 1 \\ \Delta_{DSP} \\ \Delta_{DEO} \end{vmatrix}$ | $\begin{array}{c c}   & 47.85 \pm 1.33 \\ \downarrow &   14.61 \pm 2.63 \\ \downarrow &   28.62 \pm 3.89 \end{array}$ | $\begin{array}{c c} 3 & 37.68 \pm 0.65 \\ 3 & 9.64 \pm 0.50 \\ 9 & 17.37 \pm 1.10 \end{array}$  | $57.29 \pm 0.77$<br>$11.11 \pm 0.93$<br>$\underline{16.29} \pm 2.07$ | $egin{array}{ c c c c } 59.21 \pm 0.97 \\ \textbf{8.26} \pm 0.57 \\ \textbf{14.95} \pm 1.22 \\ \hline \end{array}$ |
| $egin{array}{c c} EMNLP & Acc. \\ \Delta_{DSP} & \Delta_{DEO} \end{array}$      | $ \begin{array}{c c}                                    $                                                             | $\begin{array}{c c} 3 & 82.23 \pm 0.18 \\ 7 & 34.80 \pm 1.26 \\ 1 & 31.11 \pm 1.34 \end{array}$ | $86.81 \pm 0.22$<br>$52.88 \pm 1.39$<br>$45.78 \pm 1.36$             | $79.92 \pm 0.77$ $10.87 \pm 4.00$ $8.72 \pm 2.17$                                                                  |

Table 4: Comparison to baselines (r = 1, 30% Top/Bottom).

|          |                                                                                                                                             | GCN                                                                                                           | FairWalk                                                                                          | FairGNN                                                                           | DegFairGCN                                                                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Chamel.  | $egin{array}{c} \operatorname{Acc.} \uparrow \   \ \Delta_{\mathrm{DSP}} \downarrow \   \ \Delta_{\mathrm{DEO}} \downarrow \   \end{array}$ | $ \begin{vmatrix} 62.45 \pm 0.2 \\ 5.95 \pm 1.02 \\ 18.00 \pm 1.76 \end{vmatrix} $                            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                            | $70.70 \pm 0.52$<br>$6.92 \pm 0.29$<br>$14.52 \pm 1.09$                           | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                |
| Squirrel | $\begin{vmatrix} Acc. \uparrow \\ \Delta_{DSP} \downarrow \\ \Delta_{DEO} \downarrow \end{vmatrix}$                                         | $ \begin{vmatrix} 47.85 \pm 1.33 \\ 10.34 \pm 2.13 \\ 22.62 \pm 3.10 \end{vmatrix} $                          | $\begin{array}{c c} 3 & 37.68 \pm 0.65 \\ \hline 6.17 \pm 0.36 \\ 0 & 14.97 \pm 1.12 \end{array}$ | $57.29 \pm 0.77$<br>$9.27 \pm 0.68$<br>$17.42 \pm 1.11$                           | $ \begin{vmatrix} 59.21 \pm 0.97 \\ 7.39 \pm 0.63 \\ 17.71 \pm 1.05 \end{vmatrix} $ |
| EMNLP    | $\begin{vmatrix} \text{Acc.} \uparrow \\ \Delta_{\text{DSP}} \downarrow \\ \Delta_{\text{DEO}} \downarrow \end{vmatrix}$                    | $\begin{array}{ c c c c c c }\hline 78.92 \pm 0.43 \\ 42.87 \pm 1.46 \\ 37.89 \pm 3.23 \\ \hline \end{array}$ | $\begin{array}{c c} 3 & 82.23 \pm 0.18 \\ 0 & 34.19 \pm 0.91 \\ 7 & 34.49 \pm 0.91 \end{array}$   | $\begin{array}{c} 86.81 \pm 0.22 \\ 48.25 \pm 1.97 \\ 48.83 \pm 1.97 \end{array}$ | $79.92 \pm 0.77$<br>$14.46 \pm 3.35$<br>$10.92 \pm 2.87$                            |

# **Experiments**

Table 5: With other base GNNs (r = 1, 20% Top/Bottom).

|          |       | GAT                                                              | DegFairGAT                                                            | GraphSAGE                                                                            | DegFairSAGE                                                            |
|----------|-------|------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Chamel.  | 2.52  | $63.15 \pm 0.40$<br>$9.35 \pm 1.61$<br>$29.59 \pm 1.43$          | $69.64 \pm 0.44$<br><b>7.88</b> $\pm 1.30$<br><b>26.12</b> $\pm 2.06$ | $ \begin{vmatrix} 53.15 \pm 0.56 \\ 10.86 \pm 0.74 \\ 29.42 \pm 1.57 \end{vmatrix} $ | $60.95 \pm 0.84$<br><b>8.22</b> $\pm 1.22$<br><b>26.40</b> $\pm 2.32$  |
| Squirrel | ,     | $41.44 \pm 0.21$<br>$12.60 \pm 0.77$<br>$24.89 \pm 0.69$         | $45.55 \pm 1.44$<br>$12.03 \pm 0.63$<br>$20.64 \pm 3.06$              | $ \begin{vmatrix} 34.39 \pm 0.62 \\ 5.39 \pm 0.66 \\ 17.13 \pm 2.86 \end{vmatrix} $  | $34.63 \pm 1.31$<br>$3.76 \pm 0.23$<br>$14.91 \pm 1.35$                |
| EMNLP    | 201 1 | $70.42 \pm 0.77$<br>$24.40 \pm 3.06$<br>$\textbf{8.36} \pm 1.29$ | $81.57 \pm 1.14$ $14.11 \pm 6.28$ $12.28 \pm 6.19$                    | $ \begin{vmatrix} 83.96 \pm 0.31 \\ 56.33 \pm 1.12 \\ 51.71 \pm 0.88 \end{vmatrix} $ | $83.57 \pm 0.44$<br><b>28.43</b> $\pm 3.79$<br><b>24.65</b> $\pm 3.35$ |

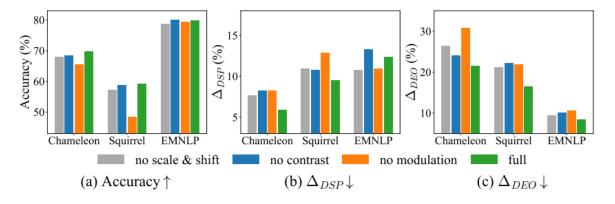



Figure 2: Ablation study on the effect of each module.

# **THANKS**